

Fuji IGBT Simulator Ver.6.3

User Manual

January 2022

Fuji Electric Co., Ltd.

MT5F31341 c

© Fuji Electric Co., Ltd. All rights reserved.

(Caution)

Before downloading and using the software, please read the following "End-user Software Agreement". By downloading the software, you agree to be bound by the terms of the following agreement. If you don't agree the agreement, remove the software and erase all copies of the software and the related documents.

End-User Software License Agreement

This is a software license agreement (the "Agreement") between you ("Customer") and Fuji Electric Co. Ltd. ("Fuji") with regard to the use of Fuji IGBT Simulator ("Software").

- (Right of Use) This software is available to use without paying additional fees to Fuji. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted.
- 2. (Copyright) Fuji retains the copyright, title and ownership of the software, the manual and related documents.
- 3. (Prohibitions) You may not reverse engineer, decompile, or disassemble this software.
- 4. (Limited Warranty) Fuji makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.

Fuji pays close attention to the quality of the contents on this simulator. However, such continents are provided "as is " without guarantees of any kinds.

This software may not be able to accurately simulate temperature ripple due to changes in PWM operating conditions or operating modes. Please contact to Fuji if you need a help to discuss Δ Tj-P/C capability.

5. (Program update) The program specification of this software is subject to change without any notice.

CONTENTS

1.	Software Setup	3
2.	Startup screen	4
3.	Module Selection	6
4.	Set temperature condition	7
5.	Thermal Circuit Model	9
6.	Single Mode Calculation	
	(1) Input simulation condition	
	(2) Loss Calibration Factor	
	(3) Run Calculation	
	(4) Simulation Results with Single Mode	
	(5) Display Multiple Results	
7.	Parameter Sweep Calculation	
	(1) Input calculation condition	
	(2) Simulation Results with Sweep	
8.	Cycle Mode Calculation	22
	(1) Input calculation condition	
	(2) Partial Calculation	
	(3) Cycle Mode Calculation Boundary Condition	
	(4) Set Load Cycle	
	(5) Simulation Results with Cycle Mode	
9.	Application circuit and PWM control	33
	(1) Type of Circuit Topology	
	(2) PWM Method (SPWM, SVPWM)	
	(3) PWM Method (3rd harmonic injection)	
	(4) 2-Phase Modulation	
	(5) PWM Method (A-NPC circuit)	
	(6) Motor DC Lock Operation	
10	. Contact us	42

1. Software Setup

This software is suitable for Microsoft® Windows® Windows7, Windows & Windows10. In order to operate, Microsoft .NET Framework 3.5 or later is required .

(1) Download site

https://www.fujielectric.com/products/semiconductor/model/igbt/simulation/list.html

F-Fuji Electric Global	About Us Products & Solutions	Investor Relations	Contact Us 🏾 🌐				
Home > Product Information > Power Semiconductors	> Design Support > IGBT Modules > Loss Sime	ulation					
Power Semiconductors TOP Product Information	Design Support Applications	About Power Semiconductors	Contact US (Semiconductors)				
Loss Simulation	Fuji Electric Global	About Us Semiconductors > Design Suppo	Products & Solutions	Investor Relations nulation > Fuji IGBT Simula	Contact Us 🏾 🍘) Q	R
	Power Semiconductors Product II	nformation Design Suppo	rt Applications	About Power Semiconductors	Contact US (Semiconductors)		
Contact 🖓	Fuji IGBT Simulator Using (downloading) the Main features of Version 6	software				-	
	Generated loss calculation accu Calculation for 2-level circuits, 3 Support for various PMVM modul Calculation for specified heatsin Parameter sweep calculation Calculation for repetitive and no Calculation for setting output function Supports Japanese / English / C For details of the changes, please	racy improved Hevel circuits (T-type, I-type) and of lation methods k and thermal conditions n-repetitive pattern operation n chinese refer to the "ChangeLog.bd" inclu	chopper circuits				00 Parametri
	Fuji IGBT Sir	mulator	Document No.	Size	Date		c Sea
	Software (Ver.6.3.2)		-	13.0MB	Nov. 2021		arch
	User Manual (Ver.6.2)		MT5F31341	5.6MB	Dec. 2020		^

(2) install

Unzip the downloaded file and copy to a custom folder.

Please double-click the file "IGBTSim.exe" to start the simulator.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

2. Startup screen

(1) End-User Software License Agreement

The software license agreement is displayed at startup.

Please confirm the contents and click the "ACCEPT" button.

End-User Software License Agreement

This is a software license agreement (the "Agreement") between you ("Customer") and Fuji Electric Co. Ltd. ("Fuji") with regard to the use of Fuji IGBT Simulator ("Software").

1. (Right of Use) This software is available to use without paying additional fees to Fuji. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted.

2. (Copyright) Fuji retains the copyright, title and ownership of the software, the manual and related documents.

(Prohibitions) You may not reverse engineer, decompile, or disassemble this software.

4. (Limited Warranty) Fuji makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein. Fuji pays close attention to the quality of the contents on this simulator. However, such continents are provided "as is " without guarantees of any kinds.

5. (Program update) The program specification of this software is subject to change without any notice.

ACCEPT		DECLINE
)	

(2) IGBT simulator menu

You can select the language from the menu. Help is available.

	2	
	Help menu The latest version of this software downloaded from web site by click "Visit WEB site".	Can be Language Help King Module Selec Visit WEB site ne Select M Manual Series: Ne
1 Euji IGBT Simula 2 3.2 Language Help Module Selection Thermal Cond Series: Crcuit: Module	ition Single Mode Cycle Mode	- Clear All
Product Information	o Image	Type - Series - Circuit - VCES[V] - IC[A] - Package - Download Data Sheet - Go to Fuji Web Site Technical Infomation
	Select language You can select the language by clicking "Language" - English - Japanese - Chinese	uji IGBT Simulator Ver 6. guage Help English mal Co Japanese pe Chinese

3. Module Selection

Set the temperature conditions for the simulation. (1) When calculating with fixed Case Temperature Select fixed Case Temperature. Calculate Tc as constant. 📧 Fuji IGBT Simulator Ver 6.3.2 \times Language Help odule Selection Thermal Condition Single Mode Cycle Mode 2 Case Temperature: Tc Single Mode >> Fixed Case Temp. 100 °C O Calculate Case Temp. Case - Heatsink Thermal Resistance: Rth(c-f) Cycle Mode >> T1/D1 0.0167 °C/W << Back Thermal Resistance Model FWD2 Heat Sink Temperature: Tf IGBT1 FWD1 IGBT2 Fixed Heatsink Temp. 100 °C Calculate Heatsink Temp. T_{vi(T1)} $T_{vj(D2)}$ Junction temp Module Heatsink Thermal Impedance: Zth(f-a) Constant Heatsink Thermal Resistance Rth(f-a) 0 °C/W Case temp Thermal User Defined Heatsink Thermal grease Heat sink temp r1 tau1 0 Heat sink 0 г2 0 tau2 0 Ambient temp. 0 0 tau3 Thermal impeadance model 0 r4 tau4 0 (Foster equivalent network) Rth(f-a) 0 $Z_{\rm th}(t) =$ Ambient Temperature: Ta Ambient Temp. 20 °C $\tau_n = r_n \cdot c_n$ For details of the thermal 2 circuit model, refer to pages 9 Click "Single Mode" or "Cycle to 10. Mode" to proceed to the next step.

MT5F31341 c

4. Set temperature condition

(2) When calculating without fixed Case Temperature

When calculating the case temperature, you can choose between fixed heatsink and heatsink temperature calculation.

5. Thermal Circuit Model

(1) Thermal Circuit Model

In the simulator, calculations are performed based on the following thermal circuit model.

The heat sink temperature T_f is calculated based on the assumption that the surface temperature distribution of the heat sink's area, which is in contact with the module, is uniform. If there is a deviation in the real temperature distribution, the calculated value might be different to the real one.

(2) Thermal Circuit Model - without copper baseplate -

The following thermal circuit model is applied for modules without copper baseplate.

(3) Thermal Circuit Model -RC-IGBT-

The following thermal circuit model is applied for RC-IGBT modules.

The heat sink temperature T_f is calculated based on the assumption that the surface temperature distribution of the heat sink's area, which is in contact with the module, is uniform. If there is a deviation in the real temperature distribution, the calculated value might be different to the real one.

Single Mode Calculation

MT5F31341 c

(2) Loss Calibration Factor

The calibration factor of each parameter can be set from "Loss calibration Factor".

All devices are mounted to a single heat sink. Calculate Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibration Factor" tab. Click "Loss Calibration Factor" tab.	2MBI600XNIC120 50				
Phase 2-Lovel Inverter PVM Modulation Method Prove Hastink Temp. IT PVM Modulation Condition Prove Hastink Temp. IT Poil Calculation Condition Pumber of Parallel Devices Power Factor Calculation Condition Power Factor Calculation Calculation Power Factor Calculation Calculation Power Factor Calculation Calcul	Circuit	Thermal	Condition		Calculate
Calculation Method Interpretature Condition Interpretature Condition Calculation Condition Interpretature Condition Interpretature Condition Number of Parallel Devices 2 pcs Neep Output Current Io 300 (Arms) Interpretature Condition Number of Parallel Devices 2 pcs Neep Output Current Io 300 (Arms) Interpretature Condition Duty 0 0 (Neep) Interpretature Condition It reactor 0 0 (Neep) Interpretature Condit	3-Phase 2-Level Inverter	Fixed He	otsink Tomn	Ff 00 *c	
Calculation Condition Number of Parallel Devices Output Freq. Fo 300 301 Switching Freq. Fsw 6 Modulation Rate Duty Click */Loss Calibration Factor*/ tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor	DW/M Medulation Mathed	Tixed He	atomic remp.	30 0	<< Back
Calculation Condition Number of Parallel Devices Quiput Greq, Fo 50 (Hz) Output Current Io 300 (Hz) Witching Freq, Fsw 6 (Hz) Power Factor 0.8 0.9 Duty 0 0 Duty 0 0 Duty 0 0.56 Duty 0.56 (Ω) T1 RQ(OFF) 0.56 12 RQ(OFF) 0.56 0.556 (Ω) Click *Loss Calibration Factor* tab. Click *Loss Calibration Value will open. 1	Providentiation Method Sinusoidal		etail Tempera	ure Condition	
Calculation Condition Number of Parallel Devices 2 pcs Output Freq, Fo 50 (Hz) Output Current to 300 (Hz) Wodulation Rate 0.9 0 Duty 0 0 Tr Re(OFF) 0.56 (Ω) Tr Re(OFF) 0.56 (Ω) Cises Calibration Factor 6 Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. 1 It loss Calibration Factor X Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.					
Number of Parallel Devices 2 pcs - Output Current Io 300 (Arms) - Switching Freq. Fsw 50 (Hz) - Power Factor 0.8 - - Modulation Rate 0.9 - - Duty 0 - - Dc Link Voltage VDC 600 (v) - T1 RG(OF) 0.56 (Ω) - T2 RG(ON) 0.56 (Ω) - Loss Calibration Factor 6 Click *Loss Calibration Factor* tab. The dialog box to input coefficients for calibration factor - Loss Calibration Factor × Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.	Calculation Condition		Sweep	Explanation	
Output Freq. Fo 50 (H2) Output Current Io 300 (Arms) Switching Freq. Fsw 6 (H42) Power Factor 0.8 Modulation Rate 0.9 Duty 0 Dc Link Voltage VDC 600 00 C Link Voltage VDC 600 11 RG(OFF) 0.56 12 RG(ON) 0.56 12 RG(OFF) 0.56 0.56 (a) 6 Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibration factor 6 Click "Loss Calibration value will open.	Number of Parallel Devices	2 pcs			
Dutput Current Io 300 (Arms) Switching Freq. Fsw 5 (Hz) Power Factor 0.8 Modulation Rate 0.9 Duty 0 DC Link Voltage VDC 6000 (V) T1 RG(OFF) 0.56 (Ω) T1 RG(OFF) 0.56 (Ω) T2 RG(OFF) 0.56 (Ω) Loss Calibration Factor 6 Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor X Loss Calibration Factor X	Output Freq. Fo	50 (Hz)		· · · · · · · · · · · · · · · · · · ·	
Switching Freq. Fsw 6 (KHz) Power Factor 0.8 Modulation Rate 0.9 Duty 0 OC Link Voltage VDC 600 (V) T1 RG(OF) 0.566 (Ω) T2 RG(ON) 0.566 (Ω) Loss Calibration Factor Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor Loss Calibration factor	Output Current Io	300 (Arms)			
Power Factor Modulation Rate Duty DC Link Voltage VDC 600 (V) DC Link Voltage VDC 600 (V) Co F1 RG(OFF) 0.56 (D) All devices are mounted on a single heat sink. Loss Calibration Factor Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open.	Switching Freq. Fsw	5 (kHz)			
Wodulation Rate 0.9 Duty 0 DC Link Voltage VDC 600 (V) T1 RG(OFF) 0.56 (Ω) T2 RG(ON) 0.56 (Ω) T2 RG(OFF) 0.56 (Ω) Loss Calibration Factor All devices are anight heat sink. Image: Comparison of the term of ter	Power Factor	0.8		T1 D1	
buty 0 DC Link Voltage VDC T1 RG(ON) T1 RG(OFF) T2 RG(ON) T2 RG(OFF) Loss Calibration Factor Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor K Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.	Modulation Rate	0.9		·	\rightarrow
C Link Voltage VDC 600 (v) IT RG(ON) 0.56 (a) IT RG(OFF) 0.56 (a) It Click * Loss Calibration Factor Click * Loss Calibration Factor* tab. The dialog box to input coefficients for calibration factor. Click * Loss Calibration Value will open. Loss Calibration Factor X Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.	Duty	0			
IT RG(ON) 0.56 (n) IT RG(OFF) 0.56 (n) It Rector	DC Link Voltage VDC	600 (V)			0
In Re(OFF) 0.56 (n) I2 Re(ON) 0.56 (n) I2 Re(OFF) 0.56 (n) All devices are mounted on a single heat sink. Loss Calibration Factor Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor X Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.	T1 RG(ON)	0.56 (Ω)			
12 RG(OFF) 0.56 (Ω) 12 RG(OFF) 0.56 (Ω) All devices are mounted on a single heat sink. Loss Calibration Factor Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor X Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.	T1 RG(OFF)	0.56 (Ω)			
Image: Calibration Factor 0.56 (Ω) All devices are mounted on a single heat sink. Image: Calibration Factor 6 Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor × Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.	T2 RG(ON)	0.56 (Ω)			
All devices are mounted on a single heat sink.	T2 RG(OFF)	0.56 (Ω)			
Loss Calibration Factor				All devices are	
Loss Calibration Factor Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.				single heat sink	
Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor × Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.	Loss Calibration Factor				
Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open.					
Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor X Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.					
6 Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor X Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.	\mathbf{X}				
Click "Loss Calibration Factor" tab. The dialog box to input coefficients for calibrating the loss calculation value will open. Loss Calibration Factor					
Loss Calibration Factor		\mathbf{X}	6 —		
Loss Calibration Factor Loss Calibration Fact			Click	"Loss Calibration Factor" tab.	
Loss Calibration Factor × Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.		`	The	dialog box to input coefficients f	or
Loss Calibration Factor × Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.			calib	ating the loss calculation value	will open.
Loss Calibration Factor × Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.					
Loss Calibration Factor × Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.					
Every generated loss by IGBT / FWD is multiplied with the provided calibration factor.	Loss Calibration Factor		×		
multiplied with the provided calibration factor.				Every generated los	s by IGBT / FWD is
				multiplied with the pr	rovided calibration factor.
		Clos	se /		
	IGBT conduction loss	Clos	se la		

IGBT turn-off loss FWD conduction loss

FWD reverse recovery loss

×

×

×

1.00

1.00 1.00

(

(3) Run Calculation

Entering "Calculation Condition" will allow you to perform the calculation.

(4) Simulation Results

When the calculation is executed, the calculation result will be output in a separate window.

(4)-1 Simulation Results (Total Loss)

The detail of total loss (cycle average) for each arm and each system is shown below.

(4)-2 Simulation Results (Graph / Data output)

The loss transition and temperature transition waveforms of the simulation results for one cycle are displayed.

The data can be saved in image data and csv format.

(5) Display Multiple Results

Multiple windows of calculation result can be displayed at the same time (max. 40).

Each time you press the Execute Calculation button, a new Calculation Results window will be displayed.

The windows will be displayed in the order of Result001, Result002, ... continuous numbering.

Please use this function for comparison when changing the calculation conditions.

Calculation result window

Parameter Sweep Calculation

6. Parameter Sweep Calculation

(1) Input simulation condition(Parameter Sweep Calculation)

In the parameter sweep calculation, it is possible to calculate the losses and temperature for a change in that parameter by setting one of the parameter in the calculation conditions as a sweep.

(2) Parameter Sweep Calculation Result

Cycle Mode Calculation

7. Cycle Mode Calculation

(1) Input simulation condition(Cycle Mode Calculation)

Cycle mode calculation enables simulation under intended operating conditions.

(2) Partial Calculation

(3) Cycle Mode Calculation : Boundary Condition

Boundary Co	ondition
Occurrence Cyclic	🔘 1 shot

Cyclic mode: The load cycle pattern is repeated continuously.

1 shot mode: The load cycle pattern is not repeated

output

	#	t [sec]	Fo [Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit		
•	1	-∞≦	50	5	0	0.9	1	1	600	3-phase Sinusoi	•	
	2	1	50	5	450	0.9	1	1	600	3-phase Sinusoi	•	
	3	2	50	5	450	0.9	1	1	600	3-phase Sinusoi	•	
			-E	nter th	ie initia	al conc	litions	in first	line.			_

(4) Enter cycle mode operating conditions

Parameter values linearly change between two operation points. Example: #1 \rightarrow #2 [*I*₀] If you enter [t=0sec, *I*₀=0A] in #1 and [t=1sec, *I*₀=150A] in #2, *I*₀ changes linearly from #1 to #2.

Parameter values change instantaneously if two operation points have same time t. Example: #3 → #4 [I₀, PF]

If you enter [t=2sec, I_0 =150A] in #3 and [t=2sec, I_0 =50A] in #4, I_0 changes instantaneously from #3 to #4.

	#	t [sec]	o Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit	
	1	0	60	5	0	0.9	1	1	600	3-phase Sinusoi	•
A	2	1	60	5	150	0.9	1	1	600	;-phase Sinusoi	•
	3	2	60	5	150	0.9	1	1	600	3-phase Sinusoi	•
	4	2	60	5	50	-0.9	1	1	600	3-phase Sinusoi	•
	5	3	60	5	50	-0.9	1	1	600	3-phase Sinusoi	•
	6	4	60	5	0	-0.9	1	1	600	3-phase Sinusoi	•
₩	7									3-phase Sinusoi	•

A Linear change B Instantaneous change

	C	opy	y 8	k P	as	ste	e Ce	ell((s)	value														
S	ele	ect a	cell	or ra	ange	e of	cell(s) →	Riç	ght click			S	ele	ect c	ell(s) →	> Ri	ght	clic	:k →	Pa	aste	
	#	t [sec]	Fo [Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC M	Circuit			Г	#	t [sec]	Fo [Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit	
•	1	0	60	5	0	0.9				3-phase Sinusoidal	-	11.		1	0	60	5	0	0.9	1	1	600	3-phase Sinusoidal	•
	2	1	60	5	150	0.9	Сору			3-phase Sinusoidal	-			2	1	60	5	150	0.9	1	1	600	3-phase Sinusoidal	*
	3	2	60	5	150	0.9	Cut		~	3-phase Sinusoidal	-			3	2	60	5	150	0.9	1	1	600	3-phase Sinusoidal	-
	4	2	60	5	50	-0.9	Paste			3-phase Sinusoidal	-		P	4	2	60	5	50	-0.9	Сору		0	3-phase Sinusoidal	•
	5	3	60	5	50	-0.9	Insert	400		3-phase Sinusoidal	-			6	4	60	5	0	-0.5	Cut		0	3-phase Sinusoidal	•
	6	4	60	5	0	-0.9	Class	X100		3-phase Sinusoidal	-	11/	*	7						Paste		-13-	3-phase Sinusoidal	-
	7						Delete			3-phase Sinusoidal	-	11′								insert v	100			
							Delete													Clear				
																				Delete				

Copy & Paste line

Select a line (click 1st column) \rightarrow Right click \rightarrow Copy

I			#	t [sec]	Fo [Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit		
I	•	Car	1	^	60	5	0	0.9	1	1	600	3-phase Sinusoidal 🚽	·	
I		Cu	у		↓	5	150	0.9	1	1	600	3-phase Sinusoidal 🔹	1	
I		Cut			[5	150	0.9	1	1	600	3-phase Sinusoidal 🛛 🗸		
I		Pas	ste		[5	50	-0.9	1	1	600	3-phase Sinusoidal 😽		
I		Ins	ert	400	Ī	5	50	-0.9	1	1	600	3-phase Sinusoidal 🔸	-	
I		Ins	ert	x100	Ĩ	5	0	-0.9	1	1	600	3-phase Sinusoidal 🗸	·	
I		Cie	ar		[3-phase Sinusoidal 🔹	·	Ĺ
l		Del	ete											

Select a line \rightarrow Right click \rightarrow Paste

		#	t [sec]	Fo [Hz]	Fsw [kHz]	lo [A]*	PF	Mod. Rate	Duty	VDC [V]	Circuit
		1	0	60	5	0	0.9	1	1	600	3-phase Sinusoidal 🔹
		2	1	60	5	150	0.9	1	1	600	3-phase Sinusoidal 🔹
		3	2	60	5	150	0.9	1	1	600	3-phase Sinusoidal 🔹
		4	2	60	5	50	-0.9	1	1	600	3-phase Sinusoidal 🔹
		5	3	60	5	50	-0.9	1	1	600	3-phase Sinusoidal 🔹
		6	4	60	5	0	-0.9	1	1	600	3-phase Sinusoidal 🔹
64		7									3-phase Sinusoidal 🔹 💌
	Cop Cut	py :									
	Pas	ste									
	Ins	ert		- 8							
	Ins	ert :	x100	- 1							
	Cle	ar		- 1							
	Del	ete		_							

(5) Simulation Results(Cycle Mode Calculation)

Application circuit and PWM control

8. Application circuit and PWM control

This page shows a list of applicable circuits and PWM methods that are supported by the simulator.

(1) Type of Circuit Topology

(2) PWM Method (SPWM, SVPWM)

The reference voltage is a sinusoidal waveform.

The amplitude V_{ref} of the reference voltage for Sinusoidal PWM is defined by the following equation using modulation ratio *m*.

$$V_{ref} = mV_{dc}$$

The maximum value of *m* is 1.

The amplitude V_{ref} of the reference voltage for Space Vector PWM is defined by the following equation using modulation ratio m

$$V_{ref} = \frac{\sqrt{3}}{2} m V_{dc}$$

m is defined to be the same output voltage to the sinusoidal PWM. The maximum value of *m* is $2/\sqrt{3} = 1.1547$

(3) PWM Method (3rd harmonic injection)

The amplitude $V_{\rm ref}$ of the reference voltage for 3rd Harmonic Injection PWM is defined by the following equation using modulation ratio m

$$V_{ref} = \frac{\sqrt{3}}{2}mV_{dc}$$

m is defined to be the same output voltage to the sinusoidal PWM. The maximum value of *m* is $2/\sqrt{3} = 1.1547$

(4) 2-Phase Modulation (Discontinues PWM: DPWM)

The amplitude V_{ref} of the reference voltage for 2-Phase (A) – DPWM1 is defined by the following equation using modulation ratio *m*.

$$V_{ref} = \frac{\sqrt{3}}{2} m V_{dc}$$

m is defined to be the same output voltage to the sinusoidal PWM. The maximum value of *m* is $2/\sqrt{3} = 1.1547$

The amplitude V_{ref} of the reference voltage for 2-Phase (B) – DPWMMin is defined by the following equation using modulation ratio m.

$$V_{ref} = \frac{\sqrt{3}}{2} m V_{dc}$$

m is defined to be the same output voltage to the sinusoidal PWM. The maximum value of *m* is $2/\sqrt{3} = 1.1547$

(5) PWM Method (A-NPC circuit)

Several methods have been proposed for the PWM method of the A-NPC circuit. This simulator performs simulation with the PWM method (PWM 1) shown below.

(6) Motor DC Lock Operation

Calculate the IGBT / FWD loss when locking the motor rotation with a servo drive or the like.

As shown in the figure below, one IGBT of the upper arm (or the lower arm) of one phase and the IGBT of the other arm of the other two phases are switching controlled.

Note : The heat sink temperature T_f is calculated based on the assumption that the surface temperature distribution of the heat sink's area, which is in contact with the module, is uniform.

In the motor lock operation, only specific elements generate heat. Thus the heat does not spread optimally on the heat sink's surface and the heat sink's thermal resistance increases. As a result, T_f and Tc might become high.

Current path when IGBT is on.

Current path when IGBT is off.

If you have any questions, please contact us.

www.fujielectric.com/products/semiconductor/

